Nanotechnology & Electronics Research & Development
The Nanotechnology and Electrical Research and Development (NERD) Group has extensive facilities for the design, fabrication and characterisation of graphene (and 2D related materials) devices and sensors (including bio-sensors), high-speed electronics, solar cells, brain tumour treating fields, thin-films and composites.

These facilities include, class-100 clean room, sputtering machines, optical microscopy, Raman spectroscopy, surface plasmon resonance (SPR) system, Scanning (SEM) and Transmission (TEM) Electron microscopy (within the Plymouth Electron Microscopy Centre), atomic force microscopy (AFM), electrical, impedance and magnetic measurement systems.

Journal Publications

Haslam C., Damiati S., Whitley T., Davey P., Ifeachor E., Awan S. A., “Label-Free Sensors Based on Graphene Field-Effect Transistors for the Detection of Human Chorionic Gonadotropin Cancer Risk Biomarker”, Diagnostics 2018, 8, 5; 

Pitois SG, Tilbury J, Bouch P, Close, H, Barnett S and Culverhouse, PF (2018) Comparison of a Cost-Effective Integrated Plankton Sampling and Imaging Instrument with Traditional Systems for Mesozooplankton Sampling in the Celtic Sea. Frontiers in Marine Science 5, 9 pages, DOI= 10.3389/fmars.2018.00005.

Allsop T, Lee GB, Wang C, Neal R, Kalli K, Culverhouse P and Webb DJ (2018) Laser-sculpted hybrid photonic magnetometer with nanoscale magnetostrictive interaction. Sensors and Actuators A: Physical, 269, pp.545.

Allsop T, Kundrat V, Kalli K, Lee GB, Neal, Bond P, Shi B, Sullivan J, P Culverhouse and Webb DJ (2018) Methane detection scheme based upon the changing optical constants of a zinc oxide/platinum matrix created by a redox reaction and their effect upon surface plasmons. Sensors and Actuators B: Chemical 255, 843 – 853. doi= {

Shafait F, Harvey ES, Shortis MR, Mian A, Ravanbakhsh, M, Seager JW, Culverhouse PF, Cline DE, and Edgington DR (2017) Towards automating underwater measurement of fish length: a comparison of semi-automatic and manual stereo–video measurements. – ICES Journal of Marine Science, doi:10.1093/icesjms/fsx007.

T. Allsop, C. Mou, R. Neal, S. Mariani, D. Nagel, S. Tombelli, A. Poole, K. Kalli, A. Hine, D.J. Webb, P. Culverhouse, M. Mascini, M. Minunni, I. Bennion (2017). Real-time kinetic binding studies at attomolar concentrations in solution phase using a single-stage opto-biosensing platform based upon infrared surface plasmons. Optics Express 25(1) 39-58. 

  Awan S. A., Lombardo A., Colli., Privitera G., Kulmala T. S., Kivioja J. M., Koshino M., Ferrari A. C., “Transport Conductivity of Graphene at RF and Microwave Frequencies”, 2D Mater., 3 (1), 015010-1-11, 2016.

Li B., Pan G., Avent N. D., Islam K., Awan S. A., Davey P., “A simple approach to preparation of Graphene/Reduced Graphene Oxide/Polyallylamine electrode and their electrocatalysis for hydrogen peroxide reduction”, J. Nanosci. Nanotech., 16 (12), 12805-12810, 2016.

Awan S. A., Pan G., Al Taan L. M., Li B., Jamil N., “Transport electromagnetic properties of chemical vapour deposition graphene from direct current to 110 MHz”, IET Circuits, Devices Syst., 9 (1), 46-51, 2015.

Li B., Pan G., Jamil N. Y., Al Taan L., Awan S. A., Avent N., “Shielding technique for deposition of Au electrical contacts on graphene by sputtering“, J. Vac. Sci. Technol., 33 (3), 03061, 2015.